Linear Regression Model on Multiresolution Analysis for Texture Classification

نویسندگان

  • Baocai Yin
  • Xin
  • Y. Rui
  • T. S. Huang
  • S. F. Chang
  • J. H. Husøy
  • G. H. Wu
  • Y. J. Zhang
  • X. G. Lin
چکیده

Texture is a surface property which is used to identify and recognize the object. Texture analysis is important in many applications of computer image analysis for classification and segmentation of images based on local spatial patterns of intensity or color. In texture classification the goal is to assign an unknown sample image to one set of known texture classes. The proposed method is texture analysis and classification with linear regression model based on directional lifting based wavelet transform. In this method, texture classification is performed by analyzing the spatial correlation between some sample texture images belonging to the same kind of texture at different frequency regions, obtained by 2-D wavelet transform. The linear regression model is employed to analyze this correlation and extract texture features that characterize the samples. Therefore, this method not only considers the frequency regions but also the correlation between the frequency regions. So the classification rate is improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Regression Model on Multiresolution Analysis for Texture Classification

Texture is a surface property which is used to identify and recognize the object. Texture analysis is important in many applications of computer image analysis for classification and segmentation of images based on local spatial patterns of intensity or color. In texture classification the goal is to assign an unknown sample image to one set of known texture classes. The proposed method is text...

متن کامل

Comparison of various texture classification methods using multiresolution analysis and linear regression modelling.

Textures play an important role in image classification. This paper proposes a high performance texture classification method using a combination of multiresolution analysis tool and linear regression modelling by channel elimination. The correlation between different frequency regions has been validated as a sort of effective texture characteristic. This method is motivated by the observation ...

متن کامل

Wavelet Based Texture Analysis And Classification With Linear Regration Model

The Wavelet Transform is a multiresolution analysis tool commonly applied to texture analysis and classification and also Wavelet based pre-processing is a very successful method providing proper Image Enhancement and remove noise without considerable change in overall intensity level. The Wavelet Transform mostly used for contrast enhancement in noisy environments. In this paper we propose a t...

متن کامل

Wavelet Analysis for a New Multiresolution Model for Large-Scale Textured Terrains

Large terrain databases require a great number of polygons and textures. In consequence, transmission of terrain data over slow networks is still worrying. Multiresolution models allow progressive transmission, that is, the transmission of a simple model followed by successive refinements. In this work we describe a new multiresolution model called Geometric-Textured Bitree (GTB) that enables p...

متن کامل

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016